返回主站|会员中心|保存桌面|手机浏览
普通会员

宜春市壹点市场调查研究公司

市场调查、市场研究、管理咨询

网站公告
宜春市壹点市场调查研究公司(以下简称:壹点调研)成立于2014年4初,是一家以市场调查执行为主,同时集市场信息搜集、商务咨询、市场调研代理执行为一体的专业市场调研机构。主要承接江西、湖南,浙江宁波,安徽市场调查项目执行。
联系方式
  • 联系人:易小丽
  • 电话:0795-3221099
  • 邮件:1652059791@qq.com
  • 手机:15907958684
  • 传真:0795-3221099
站内搜索
 
荣誉资质
友情链接
首页 > 新闻中心 > 数据可视化的10个关键术语①
新闻中心
数据可视化的10个关键术语①
发布时间:2016-08-29        浏览次数:34        返回列表
 核心提示:Format 交互方式Interactive visualisations allow you to modify, manipulate and explore a computer-based display of data.
 

大数据Format 交互方式

Interactive visualisations allow you to modify, manipulate and explore a computer-based display of data. The vast majority of interactive visualisations are found on websites but increasingly might also exist within apps on tablets and smartphones. By contrast, a static visualisation displays a single, non-interactive display of data, often with the aim for it to be viewed in print as well as on a screen.

交互式可视化允许您修改,操作和探索计算机显示的数据。绝大多数交互式可视化系统在计算机网络上,但越来越多出现在平板电脑和智能手机上。相比之下,静态可视化只显示单一的、非交互数据,它通常是为了打印和在屏幕上显示。大数据

Chart type 图表类型

Charts are individual visual representations of data. There are many ways of representing your data, using different marks, shapes and layouts: these are all called types of charts. Some chart types you might be familiar with, such as the bar chart, pie chart or line chart, whilst others may be new to you, like the sankey diagram, tree map, choropleth map. See the section called ‘Taking time with visualisation’ for more on chart types.

图表是数据视觉化表示的特殊方式。表示数据的方法有很多,如使用不同的符号、形状和排列,我们把这些称之为图表的类型。一些图表类型你比较熟悉,如条形图、饼图、折线图,但其他类型你可能就很少见了,如桑基图、树图、等值线图的地图。大数据

Dataset 数据集合

A dataset is a collection of data upon which a visualisation is based. It is useful to think of a dataset as taking the form of a table with rows and columns, usually existing in a spreadsheet or database. The rows are the records – instances of things – and the columns are the variables – details about the things. Datasets are visualised in order to ‘see’ the size, patterns and relationships that are otherwise hard to observe.

数据集合是需要可视化处理的数据集合。你可以简单认为数据集合就是很多行和列的数据,这些数据通常在电子表格或数据库中。行代表一个记录,也就是一个事务的实例;列是变量,代表事务的具体信息。数据集合的大小、形式和关系是可以看到的,否则我们就很难观察。大数据

Data source 数据源

When visualisers want to show you wher the data or information comes from, they will include it in the visualisation. Sometimes it appears near the title or the bottom of the page. Other times, if the visualisation comes with an article, you can find it in the accompanying text.

当数据可视图的作者想告诉你展示的数据或信息的来源时,这些来源信息也会显示出来。通常会显示在标题附近或页面的底部。如果数据可视图有文章资料,你可以在文章中找到来源信息。大数据

Axis 轴

Many types of chart have axes. These are the lines that go up and down (the vertical Y axis), or left and right (the horizontal X axis), providing a reference for reading the height or position of data values. Axes are the place wher you will usually see the scale (see below) providing a stable reference point against which you form your reading of the chart.

许多类型的图表有轴。轴分为垂直的Y轴(向上或向下)和水平X轴(向左或向右),目的是为阅读数值的高度或位置提供一个参考。轴的位置通常会有刻度(见下文),刻度为阅读图标提供一个固定的参考点。大数据

Scale 度量

Scales are marks on a visualisation that tell you the range of values of data that is presented. Scales are often presented as intervals (10, 20, 30 etc.) and will represent units of measurement, such as prices, distances, years, or percentages.

度量表示数值的规模和范围。度量通常以间隔表示(10、20、30等等),代表度数字的单位,如价格、距离、年,或百分比。大数据

Legend 图例

Many charts will use different visual properties such as colours, shapes or sizes to represent different values of data. A legend or key tells you what these associations mean and therefore helps you to read the meaning from the chart.

许多图表使用不同的视觉样式来表示不同的数据,如颜色、形状或大小。一个图例或样例告诉你这些样式是什么意思,从而帮助你阅读图表。大数据

Variables 变量

Variables are the different items of data held about a ‘thing’, for example it might be the name, date of birth, gender and salary of an employee. There are different types of variables, including quantitative (e.g. salary), categorical (e.g. gender), others are qualitative or text-based (e.g. name). A chart plots the relationship between different variables. For example, the bar chart to the right might show the number of staff (height of bar), by department (different clusters) broken down by gender (different colours).

我们可以用变量描述不同的人或事,例如,它可能是名字,出生日期,性别和工资。变量有不同类型,包括数量(如工资)、类别(如性别),还包括属性或文本信息(如名字)。图表可以表示不同变量之间的关系。例如,右边的条形图可以显示不同部门(不同的组)的员工的数量(柱的高度)和性别组成(不同的颜色)。大数据

Outliers 离群值

Outliers are those points of data that are outside the normal range of data in some way. Visualisations can often help to identify patterns in the data – in the example on the right, the higher the number on the x axis, the greater the number on the y axis. Sometimes individual bits of data don’t fit in to the pattern, like the orange dot here; those are the outliers.

离群值是那些数值超出了正常数值范围的数据。我们知道图表常常可以帮助识别数据模式,在右边的例子中,x轴上的数量越大,在y轴上数量就越大,这就是一种数据模式。有时候有些特殊的数据不符合图表中数据模式,如图中橙色点,它们就是离群值。大数据

Input area 输入区

Input areas allow you to enter information into a visualisation, maybe to search for certain names or places, or to input information about yourself that will be used in the visualisation.

输入区允许你在图表中输入信息,或是寻找特定名字或位置,或为了输入你自己的信息。

Via:PPV课大数据

End.

分享按钮